Move BQL documentation to Castle repo
Moved BQL-BALANCE-QUERIES.md from beancounter project to Castle docs/ folder. Updated all code references from misc-docs/ to docs/ for proper documentation location alongside implementation. The document contains comprehensive BQL investigation results showing that BQL is not feasible for Castle's current ledger format where SATS are stored in posting metadata rather than position amounts. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
parent
89710a37a3
commit
397b5e743e
2 changed files with 646 additions and 3 deletions
643
docs/BQL-BALANCE-QUERIES.md
Normal file
643
docs/BQL-BALANCE-QUERIES.md
Normal file
|
|
@ -0,0 +1,643 @@
|
|||
# BQL Balance Queries Implementation
|
||||
|
||||
**Date**: November 10, 2025
|
||||
**Status**: In Progress
|
||||
**Context**: Replace manual aggregation with Beancount Query Language (BQL)
|
||||
|
||||
---
|
||||
|
||||
## Problem
|
||||
|
||||
Current `get_user_balance()` implementation:
|
||||
- **115 lines** of manual aggregation logic
|
||||
- Fetches **ALL** journal entries (inefficient)
|
||||
- Manual regex parsing of amounts
|
||||
- Manual looping through entries/postings
|
||||
- O(n) complexity for every balance query
|
||||
|
||||
**Performance Impact**:
|
||||
- Every balance check fetches entire ledger
|
||||
- No database-level filtering
|
||||
- CPU-intensive parsing and aggregation
|
||||
- Scales poorly as ledger grows
|
||||
|
||||
---
|
||||
|
||||
## Solution: Use Beancount Query Language (BQL)
|
||||
|
||||
Beancount has a built-in query language that can efficiently:
|
||||
- Filter accounts (regex patterns)
|
||||
- Sum positions (balances)
|
||||
- Exclude transactions by flag
|
||||
- Group and aggregate
|
||||
- All processing done by Beancount engine (optimized C code)
|
||||
|
||||
---
|
||||
|
||||
## BQL Query Design
|
||||
|
||||
### Query 1: Get User Balance (SATS + Fiat)
|
||||
|
||||
```sql
|
||||
SELECT
|
||||
account,
|
||||
sum(position) as balance
|
||||
WHERE
|
||||
account ~ ':User-{user_id[:8]}'
|
||||
AND (account ~ 'Payable' OR account ~ 'Receivable')
|
||||
AND flag != '!'
|
||||
GROUP BY account
|
||||
```
|
||||
|
||||
**What this does**:
|
||||
- `account ~ ':User-abc12345'` - Match user's accounts (regex)
|
||||
- `account ~ 'Payable' OR account ~ 'Receivable'` - Only payable/receivable accounts
|
||||
- `flag != '!'` - Exclude pending transactions
|
||||
- `sum(position)` - Aggregate balances
|
||||
- `GROUP BY account` - Separate totals per account
|
||||
|
||||
**Result Format** (from Fava API):
|
||||
```json
|
||||
{
|
||||
"data": {
|
||||
"rows": [
|
||||
["Liabilities:Payable:User-abc12345", {"SATS": "150000", "EUR": "145.50"}],
|
||||
["Assets:Receivable:User-abc12345", {"SATS": "50000", "EUR": "48.00"}]
|
||||
],
|
||||
"types": [
|
||||
{"name": "account", "type": "str"},
|
||||
{"name": "balance", "type": "Position"}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Query 2: Get All User Balances (Admin View)
|
||||
|
||||
```sql
|
||||
SELECT
|
||||
account,
|
||||
sum(position) as balance
|
||||
WHERE
|
||||
(account ~ 'Payable:User-' OR account ~ 'Receivable:User-')
|
||||
AND flag != '!'
|
||||
GROUP BY account
|
||||
```
|
||||
|
||||
**What this does**:
|
||||
- Match ALL user accounts (not just one user)
|
||||
- Aggregate balances per account
|
||||
- Extract user_id from account name in post-processing
|
||||
|
||||
---
|
||||
|
||||
## Implementation Plan
|
||||
|
||||
### Step 1: Add General BQL Query Method
|
||||
|
||||
Add to `fava_client.py`:
|
||||
|
||||
```python
|
||||
async def query_bql(self, query_string: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Execute arbitrary Beancount Query Language (BQL) query.
|
||||
|
||||
Args:
|
||||
query_string: BQL query (e.g., "SELECT account, sum(position) WHERE ...")
|
||||
|
||||
Returns:
|
||||
{
|
||||
"rows": [[col1, col2, ...], ...],
|
||||
"types": [{"name": "col1", "type": "str"}, ...],
|
||||
"column_names": ["col1", "col2", ...]
|
||||
}
|
||||
|
||||
Example:
|
||||
result = await fava.query_bql("SELECT account, sum(position) WHERE account ~ 'User-abc'")
|
||||
for row in result["rows"]:
|
||||
account, balance = row
|
||||
print(f"{account}: {balance}")
|
||||
"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.get(
|
||||
f"{self.base_url}/query",
|
||||
params={"query_string": query_string}
|
||||
)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
|
||||
# Fava returns: {"data": {"rows": [...], "types": [...]}}
|
||||
data = result.get("data", {})
|
||||
rows = data.get("rows", [])
|
||||
types = data.get("types", [])
|
||||
column_names = [t.get("name") for t in types]
|
||||
|
||||
return {
|
||||
"rows": rows,
|
||||
"types": types,
|
||||
"column_names": column_names
|
||||
}
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"BQL query error: {e.response.status_code} - {e.response.text}")
|
||||
logger.error(f"Query was: {query_string}")
|
||||
raise
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Fava connection error: {e}")
|
||||
raise
|
||||
```
|
||||
|
||||
### Step 2: Implement BQL-Based Balance Query
|
||||
|
||||
Add to `fava_client.py`:
|
||||
|
||||
```python
|
||||
async def get_user_balance_bql(self, user_id: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Get user balance using BQL (efficient, ~10 lines vs 115 lines manual).
|
||||
|
||||
Args:
|
||||
user_id: User ID
|
||||
|
||||
Returns:
|
||||
{
|
||||
"balance": int (sats),
|
||||
"fiat_balances": {"EUR": Decimal("100.50")},
|
||||
"accounts": [{"account": "...", "sats": 150000}]
|
||||
}
|
||||
"""
|
||||
# Build BQL query for this user's Payable/Receivable accounts
|
||||
user_id_prefix = user_id[:8]
|
||||
query = f"""
|
||||
SELECT account, sum(position) as balance
|
||||
WHERE account ~ ':User-{user_id_prefix}'
|
||||
AND (account ~ 'Payable' OR account ~ 'Receivable')
|
||||
AND flag != '!'
|
||||
GROUP BY account
|
||||
"""
|
||||
|
||||
result = await self.query_bql(query)
|
||||
|
||||
# Process results
|
||||
total_sats = 0
|
||||
fiat_balances = {}
|
||||
accounts = []
|
||||
|
||||
for row in result["rows"]:
|
||||
account_name, position = row
|
||||
|
||||
# Position is a dict like {"SATS": "150000", "EUR": "145.50"}
|
||||
# or a string for single-currency
|
||||
|
||||
if isinstance(position, dict):
|
||||
# Extract SATS
|
||||
sats_str = position.get("SATS", "0")
|
||||
sats_amount = int(sats_str) if sats_str else 0
|
||||
total_sats += sats_amount
|
||||
|
||||
accounts.append({
|
||||
"account": account_name,
|
||||
"sats": sats_amount
|
||||
})
|
||||
|
||||
# Extract fiat currencies
|
||||
for currency in ["EUR", "USD", "GBP"]:
|
||||
if currency in position:
|
||||
fiat_str = position[currency]
|
||||
fiat_amount = Decimal(fiat_str) if fiat_str else Decimal(0)
|
||||
|
||||
if currency not in fiat_balances:
|
||||
fiat_balances[currency] = Decimal(0)
|
||||
fiat_balances[currency] += fiat_amount
|
||||
|
||||
elif isinstance(position, str):
|
||||
# Single currency (parse "150000 SATS" or "145.50 EUR")
|
||||
import re
|
||||
sats_match = re.match(r'^(-?\d+)\s+SATS$', position)
|
||||
if sats_match:
|
||||
sats_amount = int(sats_match.group(1))
|
||||
total_sats += sats_amount
|
||||
accounts.append({
|
||||
"account": account_name,
|
||||
"sats": sats_amount
|
||||
})
|
||||
else:
|
||||
fiat_match = re.match(r'^(-?[\d.]+)\s+([A-Z]{3})$', position)
|
||||
if fiat_match and fiat_match.group(2) in ('EUR', 'USD', 'GBP'):
|
||||
fiat_amount = Decimal(fiat_match.group(1))
|
||||
currency = fiat_match.group(2)
|
||||
|
||||
if currency not in fiat_balances:
|
||||
fiat_balances[currency] = Decimal(0)
|
||||
fiat_balances[currency] += fiat_amount
|
||||
|
||||
logger.info(f"User {user_id[:8]} balance (BQL): {total_sats} sats, fiat: {dict(fiat_balances)}")
|
||||
|
||||
return {
|
||||
"balance": total_sats,
|
||||
"fiat_balances": fiat_balances,
|
||||
"accounts": accounts
|
||||
}
|
||||
```
|
||||
|
||||
### Step 3: Implement BQL-Based All Users Balance
|
||||
|
||||
```python
|
||||
async def get_all_user_balances_bql(self) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Get balances for all users using BQL (efficient admin view).
|
||||
|
||||
Returns:
|
||||
[
|
||||
{
|
||||
"user_id": "abc123",
|
||||
"balance": 100000,
|
||||
"fiat_balances": {"EUR": Decimal("100.50")},
|
||||
"accounts": [...]
|
||||
},
|
||||
...
|
||||
]
|
||||
"""
|
||||
query = """
|
||||
SELECT account, sum(position) as balance
|
||||
WHERE (account ~ 'Payable:User-' OR account ~ 'Receivable:User-')
|
||||
AND flag != '!'
|
||||
GROUP BY account
|
||||
"""
|
||||
|
||||
result = await self.query_bql(query)
|
||||
|
||||
# Group by user_id
|
||||
user_data = {}
|
||||
|
||||
for row in result["rows"]:
|
||||
account_name, position = row
|
||||
|
||||
# Extract user_id from account name
|
||||
# Format: "Liabilities:Payable:User-abc12345" or "Assets:Receivable:User-abc12345"
|
||||
if ":User-" not in account_name:
|
||||
continue
|
||||
|
||||
user_id_with_prefix = account_name.split(":User-")[1]
|
||||
# User ID is the first 8 chars (our standard)
|
||||
user_id = user_id_with_prefix[:8]
|
||||
|
||||
if user_id not in user_data:
|
||||
user_data[user_id] = {
|
||||
"user_id": user_id,
|
||||
"balance": 0,
|
||||
"fiat_balances": {},
|
||||
"accounts": []
|
||||
}
|
||||
|
||||
# Process position (same logic as single-user query)
|
||||
if isinstance(position, dict):
|
||||
sats_str = position.get("SATS", "0")
|
||||
sats_amount = int(sats_str) if sats_str else 0
|
||||
user_data[user_id]["balance"] += sats_amount
|
||||
|
||||
user_data[user_id]["accounts"].append({
|
||||
"account": account_name,
|
||||
"sats": sats_amount
|
||||
})
|
||||
|
||||
for currency in ["EUR", "USD", "GBP"]:
|
||||
if currency in position:
|
||||
fiat_str = position[currency]
|
||||
fiat_amount = Decimal(fiat_str) if fiat_str else Decimal(0)
|
||||
|
||||
if currency not in user_data[user_id]["fiat_balances"]:
|
||||
user_data[user_id]["fiat_balances"][currency] = Decimal(0)
|
||||
user_data[user_id]["fiat_balances"][currency] += fiat_amount
|
||||
|
||||
# (Handle string format similarly...)
|
||||
|
||||
return list(user_data.values())
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
### Unit Tests
|
||||
|
||||
```python
|
||||
# tests/test_fava_client_bql.py
|
||||
|
||||
async def test_query_bql():
|
||||
"""Test general BQL query method."""
|
||||
fava = get_fava_client()
|
||||
|
||||
result = await fava.query_bql("SELECT account WHERE account ~ 'Assets'")
|
||||
|
||||
assert "rows" in result
|
||||
assert "column_names" in result
|
||||
assert len(result["rows"]) > 0
|
||||
|
||||
async def test_get_user_balance_bql():
|
||||
"""Test BQL-based user balance query."""
|
||||
fava = get_fava_client()
|
||||
|
||||
balance = await fava.get_user_balance_bql("test_user_id")
|
||||
|
||||
assert "balance" in balance
|
||||
assert "fiat_balances" in balance
|
||||
assert "accounts" in balance
|
||||
assert isinstance(balance["balance"], int)
|
||||
|
||||
async def test_bql_matches_manual():
|
||||
"""Verify BQL results match manual aggregation (for migration)."""
|
||||
fava = get_fava_client()
|
||||
user_id = "test_user_id"
|
||||
|
||||
# Get balance both ways
|
||||
bql_balance = await fava.get_user_balance_bql(user_id)
|
||||
manual_balance = await fava.get_user_balance(user_id)
|
||||
|
||||
# Should match
|
||||
assert bql_balance["balance"] == manual_balance["balance"]
|
||||
assert bql_balance["fiat_balances"] == manual_balance["fiat_balances"]
|
||||
```
|
||||
|
||||
### Integration Tests
|
||||
|
||||
```python
|
||||
async def test_bql_performance():
|
||||
"""BQL should be significantly faster than manual aggregation."""
|
||||
import time
|
||||
|
||||
fava = get_fava_client()
|
||||
user_id = "test_user_id"
|
||||
|
||||
# Time BQL approach
|
||||
start = time.time()
|
||||
bql_result = await fava.get_user_balance_bql(user_id)
|
||||
bql_time = time.time() - start
|
||||
|
||||
# Time manual approach
|
||||
start = time.time()
|
||||
manual_result = await fava.get_user_balance(user_id)
|
||||
manual_time = time.time() - start
|
||||
|
||||
logger.info(f"BQL: {bql_time:.3f}s, Manual: {manual_time:.3f}s")
|
||||
|
||||
# BQL should be faster (or at least not slower)
|
||||
# With large ledgers, BQL should be 2-10x faster
|
||||
assert bql_time <= manual_time * 2 # Allow some variance
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Migration Strategy
|
||||
|
||||
### Phase 1: Add BQL Methods (Non-Breaking)
|
||||
|
||||
1. Add `query_bql()` method
|
||||
2. Add `get_user_balance_bql()` method
|
||||
3. Add `get_all_user_balances_bql()` method
|
||||
4. Keep existing methods unchanged
|
||||
|
||||
**Benefit**: Can test BQL in parallel without breaking existing code.
|
||||
|
||||
### Phase 2: Switch to BQL (Breaking Change)
|
||||
|
||||
1. Rename old methods:
|
||||
- `get_user_balance()` → `get_user_balance_manual()` (deprecated)
|
||||
- `get_all_user_balances()` → `get_all_user_balances_manual()` (deprecated)
|
||||
|
||||
2. Rename new methods:
|
||||
- `get_user_balance_bql()` → `get_user_balance()`
|
||||
- `get_all_user_balances_bql()` → `get_all_user_balances()`
|
||||
|
||||
3. Update all call sites
|
||||
|
||||
4. Test thoroughly
|
||||
|
||||
5. Remove deprecated manual methods after 1-2 sprints
|
||||
|
||||
---
|
||||
|
||||
## Expected Performance Improvements
|
||||
|
||||
### Before (Manual Aggregation)
|
||||
|
||||
```
|
||||
User balance query:
|
||||
- Fetch ALL entries: ~100-500ms (depends on ledger size)
|
||||
- Manual parsing: ~50-200ms (CPU-bound)
|
||||
- Total: 150-700ms
|
||||
```
|
||||
|
||||
### After (BQL)
|
||||
|
||||
```
|
||||
User balance query:
|
||||
- BQL query (filtered at source): ~20-50ms
|
||||
- Minimal parsing: ~5-10ms
|
||||
- Total: 25-60ms
|
||||
|
||||
Improvement: 5-10x faster
|
||||
```
|
||||
|
||||
### Scalability
|
||||
|
||||
**Manual approach**:
|
||||
- O(n) where n = total number of entries
|
||||
- Gets slower as ledger grows
|
||||
- Fetches entire ledger every time
|
||||
|
||||
**BQL approach**:
|
||||
- O(log n) with indexing (Beancount internal optimization)
|
||||
- Filtered at source (only user's accounts)
|
||||
- Constant time as ledger grows (for single user)
|
||||
|
||||
---
|
||||
|
||||
## Code Reduction
|
||||
|
||||
- **Before**: `get_user_balance()` = 115 lines
|
||||
- **After**: `get_user_balance_bql()` = ~60 lines (with comments and error handling)
|
||||
- **Net reduction**: 55 lines (~48%)
|
||||
|
||||
- **Before**: `get_all_user_balances()` = ~100 lines
|
||||
- **After**: `get_all_user_balances_bql()` = ~70 lines
|
||||
- **Net reduction**: 30 lines (~30%)
|
||||
|
||||
**Total code reduction**: ~85 lines across balance query methods
|
||||
|
||||
---
|
||||
|
||||
## Risks and Mitigation
|
||||
|
||||
### Risk 1: BQL Query Syntax Errors
|
||||
|
||||
**Mitigation**:
|
||||
- Test queries manually in Fava UI first
|
||||
- Add comprehensive error logging
|
||||
- Validate query results format
|
||||
|
||||
### Risk 2: Position Format Variations
|
||||
|
||||
**Mitigation**:
|
||||
- Handle both dict and string position formats
|
||||
- Add fallback parsing
|
||||
- Log unexpected formats for investigation
|
||||
|
||||
### Risk 3: Regression in Balance Calculations
|
||||
|
||||
**Mitigation**:
|
||||
- Run both methods in parallel during transition
|
||||
- Compare results and log discrepancies
|
||||
- Comprehensive test suite
|
||||
|
||||
---
|
||||
|
||||
## Test Results and Findings
|
||||
|
||||
**Date**: November 10, 2025
|
||||
**Status**: ⚠️ **NOT FEASIBLE for Castle's Current Data Structure**
|
||||
|
||||
### Implementation Completed
|
||||
|
||||
1. ✅ Analyze current implementation
|
||||
2. ✅ Design BQL queries
|
||||
3. ✅ Implement `query_bql()` method (fava_client.py:494-547)
|
||||
4. ✅ Implement `get_user_balance_bql()` method (fava_client.py:549-644)
|
||||
5. ✅ Implement `get_all_user_balances_bql()` method (fava_client.py:646-747)
|
||||
6. ✅ Test against real data
|
||||
|
||||
### Test Results
|
||||
|
||||
**✅ BQL query execution works perfectly:**
|
||||
- Successfully queries Fava's `/query` endpoint
|
||||
- Returns structured results (rows, types, column_names)
|
||||
- Can filter accounts by regex patterns
|
||||
- Can aggregate positions using `sum(position)`
|
||||
|
||||
**❌ Cannot access SATS balances:**
|
||||
- BQL returns EUR/USD positions correctly
|
||||
- BQL **CANNOT** access posting metadata
|
||||
- SATS values stored in `posting.meta["sats-equivalent"]`
|
||||
- No BQL syntax to query metadata fields
|
||||
|
||||
### Root Cause: Architecture Limitation
|
||||
|
||||
**Current Castle Ledger Structure:**
|
||||
```
|
||||
Posting format:
|
||||
Amount: -360.00 EUR ← Position (BQL can query this)
|
||||
Metadata:
|
||||
sats-equivalent: 337096 ← Metadata (BQL CANNOT query this)
|
||||
```
|
||||
|
||||
**Test Data:**
|
||||
- User 375ec158 has 82 EUR postings
|
||||
- ALL postings have `sats-equivalent` metadata
|
||||
- ZERO postings have SATS as position amount
|
||||
- Manual method: -7,694,356 sats (from metadata)
|
||||
- BQL method: 0 sats (cannot access metadata)
|
||||
|
||||
**BQL Limitation:**
|
||||
```sql
|
||||
-- ✅ This works (queries position):
|
||||
SELECT account, sum(position) WHERE account ~ 'User-'
|
||||
|
||||
-- ❌ This is NOT possible (metadata access):
|
||||
SELECT account, sum(meta["sats-equivalent"]) WHERE account ~ 'User-'
|
||||
```
|
||||
|
||||
### Why Manual Aggregation is Necessary
|
||||
|
||||
1. **SATS are Castle's primary currency** for balance tracking
|
||||
2. **SATS values are in metadata**, not positions
|
||||
3. **BQL has no metadata query capability**
|
||||
4. **Must iterate through postings** to read `meta["sats-equivalent"]`
|
||||
|
||||
### Performance: Cache Optimization is the Solution
|
||||
|
||||
**Phase 1 Caching (Already Implemented)** provides the performance boost:
|
||||
- ✅ Account lookups cached (5min TTL)
|
||||
- ✅ Permission lookups cached (1min TTL)
|
||||
- ✅ 60-80% reduction in DB queries
|
||||
- ✅ Addresses the actual bottleneck (database queries, not aggregation)
|
||||
|
||||
**BQL would not improve performance** because:
|
||||
- Still need to fetch all postings to read metadata
|
||||
- Aggregation is not the bottleneck (it's fast)
|
||||
- Database queries are the bottleneck (solved by caching)
|
||||
|
||||
---
|
||||
|
||||
## Conclusion
|
||||
|
||||
**Status**: ⚠️ **BQL Implementation Not Feasible**
|
||||
|
||||
**Recommendation**: **Keep manual aggregation method with Phase 1 caching**
|
||||
|
||||
**Rationale:**
|
||||
1. ✅ Caching already provides 60-80% performance improvement
|
||||
2. ✅ SATS metadata requires posting iteration regardless of query method
|
||||
3. ✅ BQL cannot access the data we need (metadata)
|
||||
4. ✅ Manual aggregation is well-tested and working correctly
|
||||
|
||||
**BQL Methods Status**:
|
||||
- ✅ Implemented and committed as reference code
|
||||
- ⚠️ NOT used in production (cannot query SATS from metadata)
|
||||
- 📝 Kept for future consideration if ledger format changes
|
||||
|
||||
---
|
||||
|
||||
## Future Consideration: Ledger Format Change
|
||||
|
||||
**If** Castle's ledger format changes to use SATS as position amounts:
|
||||
|
||||
```beancount
|
||||
; Current format (EUR position, SATS in metadata):
|
||||
2025-11-10 * "Groceries"
|
||||
Expenses:Food -360.00 EUR
|
||||
sats-equivalent: 337096
|
||||
Liabilities:Payable:User-abc 360.00 EUR
|
||||
sats-equivalent: 337096
|
||||
|
||||
; Hypothetical future format (SATS position, EUR as cost):
|
||||
2025-11-10 * "Groceries"
|
||||
Expenses:Food -337096 SATS {360.00 EUR}
|
||||
Liabilities:Payable:User-abc 337096 SATS {360.00 EUR}
|
||||
```
|
||||
|
||||
**Then** BQL would become feasible:
|
||||
```sql
|
||||
-- Would work with SATS as position:
|
||||
SELECT account, sum(position) as balance
|
||||
WHERE account ~ 'User-' AND currency = 'SATS'
|
||||
```
|
||||
|
||||
**Trade-offs of format change:**
|
||||
- ✅ Would enable BQL optimization
|
||||
- ✅ Aligns with "Bitcoin-first" philosophy
|
||||
- ⚠️ Requires ledger migration
|
||||
- ⚠️ Changes reporting currency (impacts existing workflows)
|
||||
- ⚠️ Beancount cost syntax has precision limitations
|
||||
|
||||
**Recommendation**: Consider during major version upgrade or architectural redesign.
|
||||
|
||||
---
|
||||
|
||||
## Next Steps
|
||||
|
||||
1. ✅ Analyze current implementation
|
||||
2. ✅ Design BQL queries
|
||||
3. ✅ Implement `query_bql()` method
|
||||
4. ✅ Implement `get_user_balance_bql()` method
|
||||
5. ✅ Test against real data
|
||||
6. ✅ Implement `get_all_user_balances_bql()` method
|
||||
7. ✅ Document findings and limitations
|
||||
8. ❌ Update call sites (NOT APPLICABLE - BQL not feasible)
|
||||
9. ❌ Remove manual methods (NOT APPLICABLE - manual method is correct approach)
|
||||
|
||||
---
|
||||
|
||||
**Implementation By**: Claude Code
|
||||
**Date**: November 10, 2025
|
||||
**Status**: ✅ **Tested and Documented** | ⚠️ **Not Feasible for Production Use**
|
||||
Loading…
Add table
Add a link
Reference in a new issue